# Feasibility Investigation of MPACT for Core Design Studies of NBSR-2

Bryan Eyers, NIST Zeyun Wu, PhD, NIST Brendan Kochunas, PhD, U-M





## Outline

• Prior neutronics work on NBSR-2 (MCNP6)

Modeling NBSR-2 in MPACT

- Preliminary results
  - k<sub>eff</sub> and flux comparisons with existing MCNP model
  - Design study: optimal placement of the cold source
- Modeling limitations and future work





#### NBSR-2 and Cold Neutron Scattering

- The original NBSR is a MTR-type reactor
  - Commissioned in 1967
  - D<sub>2</sub>O coolant in a "tank" design
  - HEU fuel plate assemblies
- Accelerators can offer higher fluxes, but:
  - Higher cost per neutron
  - Large epithermal flux
  - Larger footprint
  - Complexity: more systems, staff
- Demand for continuous neutron scattering sources continues to rise
  - NIST @ 3x capacity and rising
    - Protein delivery vehicles
    - Basic physics experiments
    - Hydrogen fuel cells
    - Active 245 days/year



## Cold Neutron Economies in the 21st Century

| Reactor            | Power<br>(MW <sub>th</sub> ) | Fuel | Max Φ <sub>th</sub><br>(× 10 <sup>14</sup> n/cm <sup>2</sup> -s) | Quality factor<br>(× 10 <sup>13</sup> MTF/MW <sub>th</sub> ) |
|--------------------|------------------------------|------|------------------------------------------------------------------|--------------------------------------------------------------|
| Pulstar (NC State) | 1                            | LEU  | 0.1                                                              | 1                                                            |
| HFIR (ORNL)        | 85                           | HEU  | 10                                                               | 1.2                                                          |
| PIK (Russia)       | 100                          | HEU  | 13                                                               | 1.3                                                          |
| CARR (China)       | 60                           | LEU  | 8                                                                | 1.3                                                          |
| OPAL (Australia)   | 20                           | LEU  | 3                                                                | 1.5                                                          |
| NBSR (NIST)        | 20                           | HEU  | 4                                                                | 2                                                            |
| BR-2 (Belgium)     | 60                           | HEU  | 12                                                               | 2                                                            |
| NBSR-2 (NIST)      | 20                           | LEU  | 5                                                                | 2.5                                                          |
| RHF (ILL, France)  | 58                           | HEU  | 15                                                               | 2.6                                                          |
| FRM-II (Germany)   | 20                           | HEU  | 8                                                                | 4                                                            |

RHF and FRM-II have single-element cores, so their fuel burnup is much poorer



## Design Features of NBSR-2

**Power:** 20 MW (?)

**Fuel:** U<sub>3</sub>Si<sub>2</sub>/Al @ 19.75 % (MTR)

**Fuel dim:**  $(8.4 \text{ cm})^2 \times 60 \text{ cm}$ 

**Moderator:** High purity D<sub>2</sub>O

Fuel Cycle: 30 d, x3

**Coolant:** H<sub>2</sub>O @ 100 F









## Why choose a split core design?

- 1. Higher cryostat flux due to being nearer the center of the core
- 2. More fuel positioned at optimal slowing-down length in the moderator
- 3. Gammas have no optical path from fuel to beam (equivalent to a tangential beam)



## Michigan Parallel Characteristics Code (MPACT)



- Research code being developed at University of Michigan
- Uses MOC to perform modular ray tracing to solve the BTE in small, efficient steps.
- Neutronics solver for the VERA simulation environment (CASL)
  - Primary goal is commercial LWRs
    - Neutronics w/ depletion
    - T/H and CFD
    - CRUD deposition
  - Physics coupling to MOOSE framework adds additional computational tools



The Consortium for Advanced Simulation of LWRs
A DOE Energy Innovation Hub



#### The Case for MPACT

#### MCNP6

Very little support for reactor simulations at LANL in recent years.

Lower utility for multiphysics calculationsMany plugins exist, but multi-cyclecalculations tend to be clumsy and academic.

Geometric subdivisions are simple but labor intensive, especially during early design studies.

Stochastic method (Monte Carlo)

#### **MPACT**

Young, but active, project at the University of Michigan and ORNL.

Part of VERA (CASL), can couple to MOOSE – T/H, depletion, and material performance simulations are all realistic.

Requires lattice-based "modular" geometry, but arbitrarily fine submeshing.

- Potential for excellent resolution

Deterministic method (Method of Characteristics w/ CMFD)





## Coarse Mesh Finite Differencing (CMFD)

- Non-linear synthetic acceleration method
  - Solve the transport equation with "blocks" of fluxweighted cross sections

• 
$$\overline{\Phi}_{j,g} = \frac{\sum_{i \in j} \Phi_{i,g} V_i}{\sum_{i \in j} V_i}$$

• 
$$\bar{\Sigma}_{s,j,g} = \frac{\sum_{i \in j} \sum_{s,j,g} \Phi_{i,g} V_i}{\sum_{i \in j} \Phi_{i,g} V_i}$$

- Blocks are linked using a radial coupling correction term that preserves the leakage rates between faces
- Dramatically reduces computation time, improves convergence (when it works)
  - # iterations required reduced by 1 order of magnitude



**CMFD Node** 





#### CMFD Blocks and Symmetry

- CMFD applied in a modular lattice
- NBSR's ¼ symmetry with staggered blocks requires 4 modules per element
- Artificial constraints:
  - Core gap adjusted in moduli of 2x the quarter assembly.
  - Square reflector tank

(MCNP model adjusted accordingly)





## Final MCNP and MPACT Models (2-D only)



#### Modular Ray Tracing

- MOC used on this level
  - Ray tracing is only performed once for each module type, regardless of usage.
  - Typical module: one fuel assembly
- Significant performance gains
  - Memory reduced by 10<sup>7</sup> (in 3D)

- Artificial constraints for NBSR-2:
  - Minimal (heterogeneous plates lacked slight curvature)







## Submeshing: One Fuel Element



#### **Core Model**

Dimensions: 2 (reflective Z)

Symmetry: 1/4

#### **Submeshing**

Total # cells: 1,173,556

Average cell size: 0.3 mm<sup>2</sup>

(fuel)

#### Work Station ("Abacus")

# cores: 8 @ 1.15 MHz

# threads/core: 1

**Environment: Linux** 

Run time: ~5 hrs



## Relevant program settings

#### **MCNP6** Parameters

- kcode 10000 1 10 210
- endfb-7.1
- fmesh4 (in 0.1 mm<sup>2</sup> increments)
- Geometry modified to match MPACT.

#### **MPACT Parameters**

- 28 modular assemblies
- MOC: 1-gp linear sweep w/ Gauss-Seidel iters
- Ray tracing: 0.2 mm, Chebyshev-Yamamoto,  $\phi$ =16,  $\theta$ =3
- Convergence criteria: 2e-6
- 0.3 mm<sup>2</sup> submeshes (in fuel)
- mpact47g\_70s\_v4.0\_11032014.fmt
  - Mg, Si, and Ti must be natural.





#### MPACT vs MCNP: Excellent Agreement

MPACT: 1.22276 ± 0.00001 (converged)

MCNP6:  $1.22456 \pm 0.00047 (1-\sigma)$ 

k<sub>eff</sub> within 120 pcm

• Σ libraries a likely source of error

 $\phi_{th}$  within 1.5 % (1- $\sigma$ )

Small cell mismatches



## Optimization of Cryostat Placement

- Cryostat uses ~40 K liquid LH<sub>2</sub> (or 30 K LD<sub>2</sub>) to slow neutrons to a Boltzmann temperature of ~3 meV.
- Refrigerative capability becomes a limiting factor, so fast neutrons dramatically reduce performance.
- Cryostat site moved from 18 cm to 20 cm to improve neutron efficiency by 22%.
  - @ 18 cm, F/T: 4.6
  - @ 20 cm, F/T: 5.6 (This is neglecting gamma heat)







#### Run Time: A Limiting Factor x1014

- MPACT run time: ~5 hours in 2-D
  - ¼ symmetry applied
  - TCP<sub>0</sub> cross sections broken; used P<sub>2</sub> instead
  - No CMFD acceleration!!!
    - Code bug, possibly due to large reflector
- Smaller reflector shown to be a poor approximation along centerline
- Not having a local copy of MPACT at NIST slowed troubleshooting







#### Concluding Remarks

- MPACT is capable of producing results comparable to MCNP6 for NBSR-2.
  - $k_{eff}$  agreement within 120 pcm;  $\phi_{th}$  within 1.5 %.
  - Structured lattice created some minor geometric limitations.
  - Large D<sub>2</sub>O reflector may have inhibited CMFD.
    - Disabling CMFD gave accurate results, at the cost of computation time.
- CMFD and TCP<sub>0</sub> limitations are holding up 3-D work for now.
  - (At least as long as we're limited to U-M computational resources)
- Future studies of T/H and fuel depletion using VERA are anticipated.
  - This may require migration from native MPACT inputs to the VERA input format.
  - Coupling to BISON could also be explored.





#### References

- Kochunas, B., B. Collins, D. Jabaay, T. Downar and W. Martin, "Overview of Development and Design of MPACT: Michigan Parallel Characteristics Transport Code," *Proceedings of the* International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2013), 45, pp. 42. (2013)
- B. Kochunas, et al., "VERA Core Simulator Methodology for PWR Cycle Depletion," Proc. M&C 2015, Nashville, TN, USA, April 19-23. (2015)
- B. Collins and A. Godfrey, "Analysis of the BEAVRS Benchmark using VERA-CS," Proc. M&C 2015, Nashville, TN, USA, April 19-23. (2015)
- Z. Wu, M. Carlson, R. E. Willams, S. O'Kelly, and J. M. Rowe, "A Novel Compact Core Design for Beam Tube Research Reactors," *Transactions of the American Nuclear Society*, **112**, pp. 795-798. (2015)
- Studsvik Scandpower Inc., "CASMO-4 A Fuel Assembly Burnup Program User's Manual," Restricted Distribution – University Release, SSP-09/443-U Rev 0. (2009).
- SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, ORNL/TM-2005/39, Version 6.1, June 2011. Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-785.



